Prediction of Biomass Production and Nutrient Uptake in Land Application Using Partial Least Squares Regression Analysis

نویسندگان

  • Vasileios A. Tzanakakis
  • Andy Mauromoustakos
  • Andreas N. Angelakis
چکیده

Partial Least Squares Regression (PLSR) can integrate a great number of variables and overcome collinearity problems, a fact that makes it suitable for intensive agronomical practices such as land application. In the present study a PLSR model was developed to predict important management goals, including biomass production and nutrient recovery (i.e., nitrogen and phosphorus), associated with treatment potential, environmental impacts, and economic benefits. Effluent loading and a considerable number of soil parameters commonly monitored in effluent irrigated lands were considered as potential predictor variables during the model development. All data were derived from a three year field trial including plantations of four different plant species (Acacia cyanophylla, Eucalyptus camaldulensis, Populus nigra, and Arundo donax), irrigated with pre-treated domestic effluent. PLSR method was very effective despite the small sample size and the wide nature of data set (with many highly correlated inputs and several highly correlated responses). Through PLSR method the number of initial predictor variables was reduced and only several variables were remained and included in the final PLSR model. The important input variables maintained were: Effluent loading, electrical conductivity (EC), available phosphorus (Olsen-P), Na+, Ca2+, Mg2+, K2+, SAR, and NO3−-N. Among these variables, effluent loading, EC, and nitrates had the greater contribution to the final PLSR model. PLSR is highly compatible with intensive agronomical practices such as land application, in which OPEN ACCESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares

The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...

متن کامل

Removal of Brilliant Green and Crystal violet from Mono- and Bi-component Aqueous Solutions Using NaOH-modified Walnut Shell

In the present work, the simultaneous determination of Brilliant green (BG) and Crystal violet (CV) dyes with overlapped absorption spectra in binary mixture solution, was carreid out using the partial least squares (PLS) and direct ortogonal signal correction-partial least squares (DOSC-PLS) methods. The results obtained indicate that by applying DOSC on the calibration and prediction data for...

متن کامل

Spectrophotometric Simultaneous Kinetic Determination of Iodide and Iodate Using Partial Least-Squares Calibration Method in a Single Kinetic Run

A rapid, sensitive and versatile kinetic method is presented for the simultaneous spectrophotometric determination of iodide and iodate by partial least-squares regression (PLS) using original and derivate data named as absorbance and rate data. The method is based on the catalytic effect of the cited anions on the reaction rate between Ce(IV) and As(III) in 2 mol l?1 sulfuric acid medium. The ...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Optimal Wavelength Selection on Hyperspectral Data with Fused Lasso for Biomass Estimation of Tropical Rain Forest

Above-ground biomass prediction of tropical rain forest using remote sensing data is of paramount importance to continuous largearea forest monitoring. Hyperspectral data can provide rich spectral information for the biomass prediction; however, the prediction accuracy is affected by a small-sample-size problem, which widely exists as overfitting in using high dimensional data where the number ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014